FULL SYLLABUS TEST
 By: OP GUPTA (+91-9650 350 480)

Time Allowed: 180 Minutes

Subject : MATHEMATICS Class X (SA - 01)

SECTION - A

Q01. The decimal expansion of the rational expression $\frac{154787}{1250}$ will terminate after.........? ?

Q02. If the zeroes of $x^{2}+(a+1) x+b$ are 2 and -3 , then values of a and b are.
Q03. In $\triangle \mathrm{ABC}, \mathrm{PQ}| | \mathrm{BC}$, if $\mathrm{AP}=1.5 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}$, $\mathrm{AQ}=1.3 \mathrm{~cm}$ then $\mathrm{QC}=$
Q04. If $\cos 9 \theta=\sin \theta$ and $9 \theta<90^{\circ}$, then the value of $\tan 5 \theta$ is...........
Q05. If $\sin \theta-\cos \theta=0$ then the value of $(\sin \theta+\cos \theta)$ is.
Q06. Statement: $n^{2}-1$ is divisible by 8 , if n is an even integer. True/ False?
Q07. The LCM and HCE of two positive numbers are l and h respectively. If one integer is a then, the other will be
Q08. The of equations $x=a$ and $y=b$ graphically represents lines which are intersecting at

SECTION - B

Q09. Prove that: $\tan ^{2} \theta+\cot ^{2} \theta+2=\sec ^{2} \theta \operatorname{cosec}^{2} \theta$.
Q10. If -1 is one zero of $p(x)=3 x^{3}-5 x^{2}-11 x-3$, find the other two zeroes.
Q11. Find the HCF of 867 and 255 with the help of Euclid's division algorithm.
Q12. If $\sin \theta+\cos \theta=\sqrt{3}$, then prove that: $\tan \theta+\cot \theta=1$.
Q13. Three angles of a triangle are x, y and 40°. The difference between the two angles x and y is 30°. Find x and y.
Q14. In $\triangle \mathrm{PQR}, \mathrm{S}$ is any point on QR such that $\angle \mathrm{RSP}=\angle \mathrm{RPQ}$. Prove that $\mathrm{RS} \times \mathrm{RQ}=\mathrm{RP}^{2}$.

SECTION - C

Q15. Find mode of the following distribution:
Height (incm) No.of Students

$150-155$	12
$155-160$	9
$160-165$	14
$165-170$	10
$170-175$	5

Q16. Two towers of heights 10 m and 30 m stand on a plane ground. If the distance between their feet is 15 m , find the distance between their tops.

Q17. Mean of the following data is 21.5, find the missing value k :
x : $\begin{array}{llllll}5 & 15 & 25 & 35 & 45\end{array}$
$f: \begin{array}{lllll}6 & 4 & 3 & k & 2\end{array}$
Q18. X and Y are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. If the lengths of PX, QX, PY and YR (in centimeters) are $4,4.5,8$ and 9 respectively. Then show that $X Y|\mid Q R$.
Q19. Prove that $\frac{3 \sqrt{3}+2}{5}$ is irrational.
Q20. Show that any positive odd integer is of the form $8 m+1$ or $8 m+5$ or $8 m+7$, where m is some positive integer.
Q21. Ram scored 40 marks in a test, getting 3 marks for each right answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each right answers and 2 marks been deducted for each wrong answer, then he would have scored 50 marks. How many questions were there in the test?
Q22. If $a^{2} \sec ^{2} \theta-b^{2} \tan ^{2} \theta=c^{2}$ then, prove that: $\sin ^{2} \theta=\frac{c^{2}-a^{2}}{c^{2}-b^{2}}$.
Q23. If the polynomial given as follow $p(x)=x^{4}-3 x^{2}+5 x+3$ is divided by $x^{2}-2$, the remainder is $a x+b$. What will be the quotient? Find also the values of a and b.
Q24. Prove the identity:
$\frac{1}{\operatorname{cosec} A-\cot A}-\frac{1}{\sin A}=\frac{1}{\sin A}-\frac{1}{\operatorname{cosec} A+\cot A}$.

SECTION - D

Q25. Find the mean marks by step deviation method for the following data:

Marks No.of Students
Below 104
Below $20 \quad 10$
Below 3018
Below $40 \quad 28$
Below 5040
Below $60 \quad 70$
Q26. Let $A B C D$ is a parallelogram. E is the
midpoint of $C D$. The line segment joining B and E intersect AC in L and AD produced in M. Prove that $\mathrm{LM}=2 \mathrm{BL}$
Q27. Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.
Q28. The height (in cm.) of 60 persons of different age groups are shown in the table below:

Height (in cm.)	No. of persons
$145-150$	8
$150-155$	10
$155-160$	9
$160-165$	15
$165-170$	10
$170-175$	8

Using the above data, draw 'more than' ogive curve. Also find the median of the data from the graph of ogive.
Q29. State and prove converse of Pythagoras theorem.
OR Prove that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides
Q30. If $\operatorname{cosec} \theta-\sin \theta=m$ and $\sec \theta-\cos \theta=n$, prove that: $\left(m^{2} n\right)^{2 / 3}+\left(m n^{2}\right)^{2 / 3}=1$.

Q31. Determine the remaining zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\pm \sqrt{\frac{5}{3}}$.
Q32. The median of distribution given on your right side (on the top) is 14.4. Find the values of x and y, if the total frequency is 20.

Class interval Frequency

$0-6$	4
$6-12$	x
$12-18$	5
$18-24$	y
$24-30$	1

Q33. Evaluate the following:
$\frac{\sec ^{2}\left(90^{\circ}-\theta\right)-\cot ^{2} \theta}{2\left(\sin ^{2} 25^{\circ}+\sin ^{2} 65^{\circ}\right)}+\frac{2 \sin ^{2} 30^{\circ} \tan ^{2} 32^{\circ} \tan ^{2} 58^{\circ}}{3\left(\sec ^{2} 33^{\circ}-\cot ^{2} 57^{\circ}\right)}$.
OR Prove: $\frac{\cos \mathrm{A}-\sin \mathrm{A}+1}{\cos \mathrm{~A}+\sin \mathrm{A}-1}=\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}$.
Q34. Draw the graphs of the following equations:
$2 y+x=13$ and, $2 x-y=1$.
(i) Find the solution of the equations from the graph drawn.
(ii) Shade the triangular region formed by the lines and y-aixs.

Please visit:
 www.theOPGupta.WordPress.com www.theopgupta.blogspot.com

General Instructions:

(i) All the questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections, section A, B, C and D. Questions of Section A are of 1 mark each, questions of Section B are of 2 marks each, questions of Section C are of $\mathbf{3}$ marks each and, questions of Section D are of $\mathbf{4}$ marks each.
(iii) Use of calculators is not permitted.

